Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
Sci Total Environ ; 838(Pt 2): 155916, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2287741

RESUMO

The COVID-19 pandemic has been a major challenge worldwide, forcing countries to take restrictive measures beyond conventional methods in their fight against the spread of the disease. Followingly, many studies have been conducted on the effects of these measures on mental health. Wastewater-based epidemiology (WBE) was used in this study to monitor and estimate changes in antidepressant use under normal conditions (2019) and COVID-19 pandemic conditions (2020). Likewise, this study utilized wastewater-based epidemiology (WBE) to monitor and assess changing trends from the pre-pandemic period (2019) to COVID-19 pandemic conditions in antidepressant use (2020). Wastewater samples were collected from 11 cities in Turkey throughout six sampling periods covering the pre-pandemic and during-pandemic periods (June 2019-December 2020). Then, samples were analyzed via LC-MS/MS method. As a result, we observed that venlafaxine was the drug with the highest concentration (mean ± SD: 103.6 ± 112.1 mg/1000p/day). Moreover, city number 6 presented the highest venlafaxine use and the most dramatic increase during the pandemic period. Finally, this study revealed the potential of WBE to estimate the changing trends in mental health during the ongoing pandemic.


Assuntos
COVID-19 , Antidepressivos/uso terapêutico , COVID-19/epidemiologia , Cromatografia Líquida , Humanos , Pandemias , Espectrometria de Massas em Tandem , Turquia/epidemiologia , Cloridrato de Venlafaxina , Águas Residuárias/análise
3.
Clin Ter ; 173(6): 526-527, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2273899

RESUMO

Abstract: Drug use in Europe is now more than ever a multifaceted issue involving a broad and ever-changing range of substances. Alarmingly, recent European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) reports show that roughly 83 million adults aged between 15 and 64 years in the European Union have used illicit substances at least once in their lifetime. Polydrug use is rife, and consumption patterns range from experimental/occasional, habitual use all the way to addiction. Traditional epidemiological methods delineating drug abuse specifics (i.e. number of users, age groups, specific characteristics and patterns of use) are questionnaire-based and therefore present the classic biases linked to the selected sample, thus risking an underesti-mation of the phenomenon. The Mario Negri IRCCS Pharmacological Research Institute has developed a new population screening method based on wastewater-based epidemiology (WBE) which makes it possible to detect drug metabolites in waste water and to estimate which and how many substances are consumed by the entire population belonging to the wastewater treatment plant being monitored. Such a technique has gained great interest at the national and international level, and may be especially valuable as a detection/monitoring tool at a time when novel psychoactive substances have come to trigger a major public health crisis, on account of their elusiveness and potential as substitutes/adulterants of traditional substances of abuse.


Assuntos
Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Águas Residuárias/análise , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Europa (Continente)
4.
Swiss Med Wkly ; 152: w30202, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2202460

RESUMO

AIMS OF THE STUDY: Wastewater-based epidemiology has contributed significantly to the comprehension of the dynamics of the current COVID-19 pandemic. Its additional value in monitoring SARS-CoV-2 circulation in the population and identifying newly arising variants independently of diagnostic testing is now undisputed. As a proof of concept, we report here correlations between SARS-CoV-2 detection in wastewater and the officially recorded COVID-19 case numbers, as well as the validity of such surveillance to detect emerging variants, exemplified by the detection of the B.1.1.529 variant Omicron in Basel, Switzerland. METHODS: From July 1 to December 31, 2021, wastewater samples were collected six times a week from the inflow of the local wastewater treatment plant that receives wastewater from the catchment area of the city of Basel, Switzerland, comprising 273,075 inhabitants. The number of SARS-CoV-2 RNA copies was determined by reverse transcriptase-quantitative PCR. Spearman's rank correlation coefficients were calculated to determine correlations with the median seven-day incidence of genome copies per litre of wastewater and official case data. To explore delayed correlation effects between the seven-day median number of genome copies/litre wastewater and the median seven-day incidence of SARS-CoV-2 cases, time-lagged Spearman's rank correlation coefficients were calculated for up to 14 days. RNA extracts from daily wastewater samples were used to genotype circulating SARS-CoV-2 variants by next-generation sequencing. RESULTS: The number of daily cases and the median seven-day incidence of SARS-CoV-2 infections in the catchment area showed a high correlation with SARS-CoV-2 measurements in wastewater samples. All correlations between the seven-day median number of genome copies/litre wastewater and the time-lagged median seven-day incidence of SARS-CoV-2 cases were significant (p<0.001) for the investigated lag of up to 14 days. Correlation coefficients declined constantly from the maximum of 0.9395 on day 1 to the minimum of 0.8016 on day 14. The B.1.1.529 variant Omicron was detected in wastewater samples collected on November 21, 2021, before its official acknowledgement in a clinical sample by health authorities. CONCLUSIONS: In this proof-of-concept study, wastewater-based epidemiology proved a reliable and sensitive surveillance approach, complementing routine clinical testing for mapping COVID-19 pandemic dynamics and observing newly circulating SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Suíça/epidemiologia , Águas Residuárias/análise
5.
Sci Total Environ ; 857(Pt 1): 159188, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2121792

RESUMO

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias/análise , RNA Viral , Estudos Prospectivos
6.
Sci Total Environ ; 857(Pt 2): 159358, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2105900

RESUMO

Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3-4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias/análise , COVID-19/epidemiologia , RNA Viral , Prevalência , Biomarcadores
7.
Environ Monit Assess ; 194(12): 884, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2093260

RESUMO

In the last few decades, environmental contaminants (ECs) have been introduced into the environment at an alarming rate. There is a risk to human health and aquatic ecosystems from trace levels of emerging contaminants, including hospital wastewater (HPWW), cosmetics, personal care products, endocrine system disruptors, and their transformation products. Despite the fact that these pollutants have been introduced or detected relatively recently, information about their characteristics, actions, and impacts is limited, as are the technologies to eliminate them efficiently. A wastewater recycling system is capable of providing irrigation water for crops and municipal sewage treatment, so removing ECs before wastewater reuse is essential. Water treatment processes containing advanced ions of biotic origin and ECs of biotic origin are highly recommended for contaminants. This study introduces the fundamentals of the treatment of tertiary wastewater, including membranes, filtration, UV (ultraviolet) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Next, a detailed description of recent developments and innovations in each component of the emerging contaminant removal process is provided.


Assuntos
Cosméticos , Disruptores Endócrinos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Ecossistema , Disruptores Endócrinos/análise , Monitoramento Ambiental , Humanos , Esgotos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
PLoS One ; 17(10): e0274793, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2079736

RESUMO

BACKGROUND: Wastewater-based epidemiology (WBE) surveillance as an early warning system (EWS) for monitoring community transmission of SARS-CoV-2 in low- and middle-income country (LMIC) settings, where diagnostic testing capacity is limited, needs further exploration. We explored the feasibility to conduct a WBE surveillance in Indonesia, one of the global epicenters of the COVID-19 pandemic in the middle of 2021, with the fourth largest population in the world where sewer and non-sewered sewage systems are implemented. The feasibility and resource capacity to collect samples on a weekly or fortnightly basis with grab and/or passive sampling methods, as well as to conduct qualitative and quantitative identification of SARS-CoV-2 ribonucleic acid (RNA) using real-time RT-PCR (RT-qPCR) testing of environmental samples were explored. MATERIALS AND METHODS: We initiated a routine surveillance of wastewater and environmental sampling at three predetermined districts in Special Region of Yogyakarta Province. Water samples were collected from central and community wastewater treatment plants (WWTPs), including manholes flowing to the central WWTP, and additional soil samples were collected for the near source tracking (NST) locations (i.e., public spaces where people congregate). RESULTS: We began collecting samples in the Delta wave of the COVID-19 pandemic in Indonesia in July 2021. From a 10-week period, 54% (296/544) of wastewater and environmental samples were positive for SARS-CoV-2 RNA. The sample positivity rate decreased in proportion with the reported incidence of COVID-19 clinical cases in the community. The highest positivity rate of 77% in week 1, was obtained for samples collected in July 2021 and decreased to 25% in week 10 by the end of September 2021. CONCLUSION: A WBE surveillance system for SARS-CoV-2 in Indonesia is feasible to monitor the community burden of infections. Future studies testing the potential of WBE and EWS for signaling early outbreaks of SARS-CoV-2 transmissions in this setting are required.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Viabilidade , Humanos , Indonésia/epidemiologia , Pandemias , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Esgotos , Solo , Águas Residuárias/análise , Água/análise
9.
Sci Total Environ ; 857(Pt 2): 159351, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2069672

RESUMO

Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.


Assuntos
COVID-19 , Ketamina , Humanos , Estados Unidos/epidemiologia , Benzodiazepinas , Alprazolam/análise , Águas Residuárias/análise , Pandemias , Nordazepam/análise , Zolpidem/análise , Clonazepam/análise , Lorazepam/análise , Espectrometria de Massas em Tandem/métodos , COVID-19/epidemiologia , Temazepam/análise , México/epidemiologia , Diazepam
10.
Environ Monit Assess ; 194(11): 823, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2041295

RESUMO

Leather industry is the second largest export-earning sector of Pakistan. However, because of poor waste management, this industry has been continuously polluting the environment. In this paper, the impact of tanneries on the groundwater quality of Kasur city (i.e., the second largest leather producing city) is examined. The study is conducted in the following three phases: (I) water samples collection, (II) determination of physio-chemical properties, and (III) application of data mining techniques. In phase I, groundwater samples were collected from various sources such as hand pumps, motor pumps, and tube wells. In phase II, several physio-chemical properties such as (i) total dissolved solids (TDS), (ii) pH, (iii) turbidity, (iv) electrical conductivity (EC), (v) total hardness (TH), (vi) total alkalinity (TA), (vii) nitrates, (viii) chromium, (ix) fluoride, and (x) chloride were estimated. The estimated values of all these foregoing parameters are then compared with the Punjab Environmental Quality Standards for Drinking Water (PEQSDW). In phase III, principle component analysis and cluster analysis of the estimated parameters were performed to elucidate the relation between various parameters and to highlight the highly vulnerable sites, respectively. The results exhibit that most of the sampling collections sites are at the threshold of losing quality water. Moreover, it is also found that Mangal Mandi carries the worst groundwater quality among all sampling locations. Overall, it is concluded that serious attention is due from the water and wastewater authorities to further investigate and monitor the groundwater quality of Kasur before the country strikes with another pandemic after COVID-19.


Assuntos
COVID-19 , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Cloretos/análise , Cromo/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Fluoretos/análise , Água Subterrânea/química , Humanos , Nitratos/análise , Paquistão , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água
12.
Huan Jing Ke Xue ; 43(9): 4597-4607, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: covidwho-2025656

RESUMO

The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.


Assuntos
Poluentes Químicos da Água , Cloroquina/análogos & derivados , Radical Hidroxila/análise , Radical Hidroxila/química , Oxirredução , Águas Residuárias/análise , Poluentes Químicos da Água/análise
13.
Int J Environ Res Public Health ; 19(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2010085

RESUMO

SARS-CoV-2 RNA loads can be detected in the excreta of individuals with COVID-19 and have demonstrated positive correlations with clinical infection trends. Consequently, wastewater-based epidemiology (WBE) approaches have been implemented globally as a public health surveillance tool to monitor community-level prevalence of infections. The majority of wastewater specimens are gathered as either composite samples via automatic samplers (autosamplers) or grab samples. However, autosamplers are expensive and can be challenging to maintain in cold weather, while grab samples are particularly susceptible to temporal variation when sampling sewage directly from complex matrices outside residential buildings. Passive sampling can provide an affordable, practical, and scalable sampling system while maintaining a reproducible SARS-CoV-2 signal. In this regard, we deployed tampons as passive samplers outside of a COVID-19 isolation unit (a segregated residence hall) at a university campus from 1 February 2021-21 May 2021. Samples (n = 64) were collected 3-5 times weekly and remained within the sewer for a median duration of 24 h. SARS-CoV-2 RNA was quantified using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 gene fragments. We quantified the mean viral load captured per individual and the association between the daily viral load and total persons, adjusting for covariates using multivariable models to provide a baseline estimate of viral shedding. Samples were processed through two distinct laboratory pipelines on campus, yielding highly correlated N2 concentrations. Data obtained here highlight the success of passive sampling utilizing tampons to capture SARS-CoV-2 in wastewater coming from a COVID-19 isolation residence, indicating that this method can help inform building-level public health responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral/análise , SARS-CoV-2/genética , Esgotos , Águas Residuárias/análise
14.
Sci Total Environ ; 852: 158421, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2008099

RESUMO

Wastewater-based surveillance (WBS) has been an effective tool for monitoring and understanding potential SARS-CoV-2 transmission across small and large-scale communities. In this study at the University of Saskatchewan, the assessment of SARS-CoV-2 was done over eight months during the 2021-2022 academic year. Wastewater samples were collected using passive samplers that were deployed in domestic sewer lines near adjacent campus residences and extracted for viral RNA, followed by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The results showed similar trends for SARS-CoV-2 detection frequencies and viral loads across university residences, the whole campus, and from related WBS at Saskatoon Wastewater Treatment Plant. The maximum daily detection frequency for seven dormitories considered was about 75 %, while maximum daily case numbers for the residences and campus-wide were about 11 and 75 people, respectively. In addition, self-reported rates of infection on campus peaked during similar time frames as increases in viral load were detected at the Saskatoon wastewater treatment plant. These similarities indicate the usefulness and cost-effectiveness of monitoring the spread of COVID-19 in small-scale communities using WBS.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias/análise , COVID-19/epidemiologia , RNA Viral , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias
15.
Environ Res ; 215(Pt 1): 114277, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2007683

RESUMO

The University of South Carolina (UofSC) was among the first universities to include building-level wastewater surveillance of SARS-CoV-2 to complement clinical testing during its reopening in the Fall 2020 semester. In the Spring 2021 semester, 24h composite wastewater samples were collected twice per week from 10 residence halls and the on-campus student isolation and quarantine building. The isolation and quarantine building served as a positive control site. The wastewater was analyzed using RT-ddPCR for the quantification of nucleocapsid genes (N1 and N2) to identify viral transmission trends within residence halls. Log10 SARS-CoV-2 RNA concentrations were compared to both new clinical cases identified in the days following wastewater collection and recovered cases returning to sites during the days preceding sample collection to test temporal and spatial associations. There was a statistically significant positive relationship between the number of cases reported from the sites during the seven-day period following wastewater sampling and the log10 viral RNA copies/L (overall IRR 1.08 (1.02, 1.16) p-value 0.0126). Additionally, a statistically significant positive relationship was identified between the number of cases returning to the residence halls after completing isolation during the seven-day period preceding wastewater sampling and the log10 viral RNA copies/L (overall 1.09 (1.01, 1.17) p-value 0.0222). The statistical significance of both identified cases and recovered return cases on log10 viral RNA copies/L in wastewater indicates the importance of including both types of clinical data in wastewater-based epidemiology (WBE) research. Genetic mutations associated with variants of concern (VOCs) were also monitored. The emergence of the Alpha variant on campus was identified, which contributed to the second wave of COVID-19 cases at UofSC. The study was able to identify sub-community transmission hotspots for targeted intervention in real-time, making WBE cost-effective and creating less of a burden on the general public compared to repeated individual testing methods.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Universidades , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
16.
J Hazard Mater ; 440: 129775, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1983444

RESUMO

Microbially derived dissolved organic nitrogen (mDON) is a major fraction of effluent total nitrogen at wastewater treatment plants with enhanced nutrient removal, which stimulates phytoplankton blooms and formation of toxic nitrogenous disinfection by-products (N-DBPs). This study identified denitrifiers as major contributors to mDON synthesis, and further revealed the molecular composition, influential factors and synthetic microorganisms of denitrification-derived mDON compounds leading to N-DBP formation. The maximum mDON accumulated during denitrification was 8.92% of converted inorganic nitrogen, higher than that of anammox (4.24%) and nitrification (2.76%). Sodium acetate addition at relatively high C/N ratio (5-7) favored mDON formation, compared with methanol and low C/N (1-3). Different from acetate, methanol-facilitated denitrification produced 13-69% more lignin-like compounds than proteins using Orbitrap LC-MS. The most abundant N-DBPs formed from denitrification-derived mDON were N-nitrosodibutylamine and dichloroacetonitrile (13.32 µg/mg mDON and 12.21 µg/mg mDON, respectively). Major amino acids, aspartate, glycine, and alanine were positively correlated with typical N-DBPs. Biosynthesis and degradation pathways of these N-DBP precursors were enriched in denitrifiers belonging to Rhodocyclaceae, Mycobacteriaceae and Hyphomicrobiaceae. As intensive disinfection is applied at worldwide wastewater treatment plants during COVID-19, carbon source facilitated denitrification should be better managed to reduce both effluent inorganic nitrogen and DON, mitigating DON and N-DBP associated ecological risks in receiving waters.


Assuntos
COVID-19 , Poluentes Químicos da Água , Purificação da Água , Alanina , Ácido Aspártico , Carbono , Desnitrificação , Desinfecção , Matéria Orgânica Dissolvida , Glicina , Humanos , Lignina , Metanol , Nitrogênio/química , Acetato de Sódio , Águas Residuárias/análise , Poluentes Químicos da Água/análise
17.
Chemosphere ; 307(Pt 4): 135996, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1982735

RESUMO

One of the environmental effects of COVID 19 is the contamination of ecosystems with antibiotics due to their high consumption to treat this disease. Many years ago, the distribution of antibiotics including azithromycin (Azi) in wastewater treatment plants in Bushehr city, seawater, and sediment of the Persian Gulf has been investigated. As Azi has been prescribed to COVID 19 patients, contamination of the environment with this drug can also be assumed. Thus, we decided to examine this hypothesis by repeating our previous study during COVID 19 period. We collected wastewater samples from influent, effluent, and different units of three wastewater treatment plants (WWTPs) including one municipal WWTP (Plant A) and two hospital-WWTPs (Plant B and C). Seawater and adjusted sediments were gathered from 8 stations located in the Persian Gulf in two seasons to evaluate the special and temporal variation. The results showed a huge growth of Azi pollution in all studied matrixes. The mean Azi values in the influent of Plant A, B, and C were 145 ng/L, 110 ng/L, and 896 ng/L, which represented an 9, 6, and 48-time increase compared with those obtained in 2017 (before COVID 19). The Azi removal efficiency had a different behavior compared to before COVID 19. The mean concentration of Azi in seawater and sediment samples was 9 ng/L and 6 ng/g, which was 3 and 4-fold higher than the previous study. Opposed to our former study, the Azi amount in the aqueous phase was less subjected to temporal seasonal variations. Our observations indicated the wide distribution of Azi in the environment and a future threat of intense growth of antibiotic resistance in ecosystems.


Assuntos
Tratamento Farmacológico da COVID-19 , Poluentes Químicos da Água , Purificação da Água , Antibacterianos/análise , Azitromicina , Ecossistema , Monitoramento Ambiental , Humanos , Oceano Índico , Água do Mar , Águas Residuárias/análise , Poluentes Químicos da Água/análise
18.
Int J Environ Res Public Health ; 19(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1979242

RESUMO

The SARS-CoV-2 outbreak has already affected more than 555 million people, and 6.3 million people have died. Due to its high infectivity, it is crucial to track SARS-CoV-2 outbreaks early to prevent the spread of infection. Wastewater monitoring appears to be a powerful and effective tool for managing epidemiological situations. Due to emerging mutations of SARS-CoV-2, there is a need to monitor mutations in order to control the pandemic. Since the sequencing of randomly chosen individuals is time-consuming and expensive, sequencing of wastewater plays an important role in revealing the dynamics of infection in a population. The sampling method used is a crucial factor and significantly impacts the results. Wastewater can be collected as a grab sample or as a 24 h composite sample. Another essential factor is the sample volume, as is the method of transport used. This review discusses different pretreatment procedures and RNA extraction, which may be performed using various methods, such as column-based extraction, TRIzol, or magnetic extraction. Each of the methods has its advantages and disadvantages, which are described accordingly. RT-qPCR is a procedure that confirms the presence of SARS-CoV-2 genes before sequencing. This review provides an overview of currently used methods for preparing wastewater samples, from sampling to sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias/prevenção & controle , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Águas Residuárias/análise
19.
J Environ Manage ; 320: 115806, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1965618

RESUMO

Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and operating a WBE program for disease surveillance and source identification. The performances of SBM and GA were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in determining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic and technical elements of WBE including sampling site selection with required spatial resolution and a source identification method.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
20.
Sci Total Environ ; 847: 157563, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1967103

RESUMO

The study of the presence of antibiotics in the aquatic environment is a preliminary step to analyse their possible harmful effects on aquatic ecosystems. In order to monitor their occurrence in the aquatic environment, the European Commission established in 2015, 2018, and 2020 three Watch Lists of substances for Union-wide monitoring (Decisions (EU) 2015/495, 2018/840, and 2020/1161), where some antibiotics within the classes of macrolides, fluoroquinolones and penicillins were included. In the Basque coast, northern Spain, three macrolide antibiotics (erythromycin, clarithromycin, azithromycin) and ciprofloxacin were monitored quarterly from 2017 to 2020 (covering a period before and after the COVID19 outbreak), in water samples collected from two Waste Water Treatment Plants (WWTPs), and three control points associated with receiving waters (transitional and coastal water bodies). This work was undertaken for the Basque Water Agency (URA). The three macrolide antibiotics in water showed a frequency of quantification >65 % in the Basque coast, with higher concentrations in the WWTP emission stations than in receiving waters. Their frequency of quantification decreased from 2017 to 2020, as did the consumption of antibiotics in Spanish primary care since 2015. Ciprofloxacin showed higher frequencies of quantification in receiving waters than in wastewaters, but the highest concentrations were observed in the WWTP emission stations. Although consumption of fluoroquinolones (among which is ciprofloxacin) in primary care in the Basque Country has decreased in recent years, this trend was not observed in the waters sampled in the present study. On the other hand, concentrations of clarithromycin, azithromycin, and ciprofloxacin in receiving waters exceeded their respective Predicted No-Effect Concentrations, so they could pose an environmental risk. These substances are widely used in human and animal medicine, so, although only ciprofloxacin is included in the third Watch List, it would be advisable to continue monitoring macrolides in the Basque coast as well.


Assuntos
COVID-19 , Poluentes Químicos da Água , Antibacterianos/análise , Azitromicina , Ciprofloxacina/análise , Claritromicina , Ecossistema , Monitoramento Ambiental , Fluoroquinolonas/análise , Humanos , Penicilinas , Medição de Risco , Espanha , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA